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We study the dynamical response of a circularly driven rigid body, focusing on the description of intrinsic
rotational behavior �reverse rotations�. The model system we address is integrable but nontrivial, allowing for
qualitative and quantitative analysis. A scale-free expression defining the separation between possible spinning
regimes is obtained.
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Nontrivial effects may arise in the realm of integrable
classical mechanics. The most recent manifestation of this
fact is the refreshed interest in the dynamics of sliding bodies
�1�. In particular, the work by Farkas et al. �2�, an investiga-
tion on the frictional coupling between translational and ro-
tational motions, has deserved attention, being followed by a
dozen of papers on related topics �3�. Most of these previous
works address the influence of friction in the free �not
driven� dynamics of disks. In the present paper we deal, in a
sense, with a complementary problem, namely, that of the
frictionless dynamics of a forced rigid body �RB�. More spe-
cifically, we study the dynamical response of RB’s subjected
to rotational driving forces �in a way that will become clear
below�, focusing on the appearance of reverse rotations.
Generally speaking, a reverse rotation occurs when a system,
or part of it, is forced to rotate counterclockwise and its
intrinsic angular degree of freedom develops a clockwise
motion, or vice versa. This terminology has been recently
used in the literature to designate unexpected rotational be-
havior of a cylinder inside a rotating drum filled with a vis-
cous fluid �4�. Related though more intricate phenomena
have been reported in the chaotic response of a parametri-
cally excited pendulum �5�, and in tests of printing machin-
ery of journals �6�. Therefore, reverse rotations are quite a
general behavior in diverse physical systems. In what fol-
lows we propose a simple mechanical model to investigate
this effect in an analytical way.

Our model system is schematically shown in Fig. 1�a�. It
consists of a uniform disk of mass m and radius R resting on
a horizontal frictionless surface. We consider a disk only for
convenience, the following reasoning is valid for an arbitrary
RB �this point will be discussed at the end of the paper�. The
system is then submitted to an external horizontal force F,
provided by a driving apparatus, through a thin rod attached
to a fixed point �P� on the disk, around which the whole
body can rotate freely. The driving apparatus takes the disk
from rest and makes the point P follow a uniform circular
trajectory of radius d around a fixed origin �O� with angular
frequency � �see Fig. 1�b��. For definiteness we assume the
rotation to be counterclockwise, and without loss of general-
ity we use a coordinate system such that the point P lies in
the positive x axis at t=0. For later times we denote the
position vector of P by d and the vector locating the center
of mass �c.m.� by r. Since the disk is assumed to be perfectly
rigid, P is always a distance l apart from the c.m. The rela-
tive position of these two points is given by the vector l, as

shown in Fig. 1�b�. Finally, the angle between the x axis and
the line connecting the c.m. and P is denoted by �. The
variables r and � completely specify the position of the disk.

The main goal of this work is to answer the following
question: Which range of initial angles �0 and parameters m,
�, R, l, and d, lead to a clockwise rotation of the disk around
P, if this is possible at all? The well-posedness of this ques-
tion will become evident soon. Since the point P itself is
being forced in the counterclockwise direction, such a dy-
namical response characterizes a reverse rotation �decreasing
��t� on average�.

According to our definitions, we have d=d cos��t�x̂
+d sin��t�ŷ, where d can take any fixed value in the inter-
val �0,��. The vector l linking the c.m. to P is given by
l= l cos � x̂+ l sin � ŷ, with 0� l�R. The position of the
c.m. is denoted by r=xx̂+yŷ. These three vectors must sat-
isfy r+ l=d, which provides two holonomic constraints:
x=d cos��t�− l cos �, and y=d sin��t�− l sin �.

One can initially cope with the problem without being
concerned with the question of how the disk came from rest
to motion. This point will be addressed later. Suppose that
Fc, unknown a priori, is the constraint force that keeps the
circular trajectory of P. This force is assumed to be provided
by a robust apparatus in the sense that the circular path is not
affected by the inertia of the disk. The equations of motion
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FIG. 1. �a� Circularly driven motion of a disk on a frictionless
horizontal surface. �b� The point P, located by the vector d, de-
scribes a circular path around the origin O. The vector r gives the
position of the center of mass �c.m.� and l is the vector that connects
the c.m. to P.
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for the c.m. degrees of freedom read Fc,x=mẍ, Fc,y =mÿ.
Newton’s second law for the angular coordinate is given by
�c= l�Fc= Ic.m.�̈ẑ, i.e.,

ml�cos � ÿ − sin � ẍ� = Ic.m.�̈ , �1�

where Ic.m. is the inertia moment of the disk with respect
to the center of mass �7�. By using the holonomic con-
straints we find ẍ= l sin � �̈+ l cos � �̇2−d�2 cos��t� and
ÿ=−l cos � �̈+ l sin � �̇2−d�2 sin��t�, one can, therefore,
decouple the angular equation of motion, which becomes
ml�d�2�sin � cos��t�−cos � sin��t��− l�̈�= Ic.m.�̈, or

�̈ −
mld�2

IP
sin�� − �t� = 0, �2�

where IP= Ic.m.+ml2. As expected, the uniform plane rotation
generates an effective gravity. We now proceed to the follow-

ing change of variables: �=�−�t+	, implying �̇= �̇−� and

�̈= �̈. This change transforms Eq. �2� into the simple pendu-

lum equation �̈+ �mld / IP��2 sin �=0. Thus, we see that the
time dependence of �, the physically relevant variable, is
given by a combination of pendular and uniform motions
�plus a constant additional factor�,

��t� = �pendulum�t� + �t − 	 . �3�

Note that solution �3� automatically yields x�t�, y�t�, and
Fc�t�. It also implies that we have a hidden constant of the
motion corresponding to the mechanical energy of the auxil-
iary pendulum �we shall use this terminology to refer

to the pendular term in the solution �3�� E= 1
2 IP�̇2

+2mdl�2 sin2�� /2�, where the potential energy is set to zero
in its lower position. In terms of initial conditions of the
original variable we have

E =
1

2
IP��̇0 − ��2 + 2mdl�2 cos2��0/2� . �4�

By inspecting solution �3� we note that reverse rotations of
the disk are possible only when �pendulum describes a motion
of rotation instead of libration, that is, the mechanical energy
of the auxiliary pendulum must satisfy E
2mdl�2 in nega-
tive pendular cycles. The relation �4� together with the equal-
ity E=2mdl�2 define the curves that separate libration and
rotation of the variable � in the space of initial conditions
��0 , �̇0�. One finds that initial conditions between the curves

�̇0 = ��1 � 2�mdl

IP
sin��0/2�	

lead to libration of �, and thus, to normal rotation of the
disk. Of course, not all points that lie outside this region
lead to the reverse behavior. The pendular rotation must
be clockwise with an angular frequency larger than �,
in order to make ��t� a decreasing function of t, on
average. The condition for reverse rotation then reads
T=�8IP /EK���2mdl /E��2	 /�, for clockwise pendular
cycles of period T, where K denotes the complete elliptic
function of first kind. In the regions where T equals 2	 /�,
the constant E satisfies the transcendental equation

K���2mdl

E 	 =
	

�
� E

2IP
. �5�

Using this prescription and Eq. �4� we manage to select the
initial conditions ��0 , �̇0� that lead to reverse and normal
rotations. These regimes are separated by the curve

�̇0 = � −�2Ẽ
IP

−
4mdl�2

IP
cos2��0/2� , �6�

where Ẽ stands for the solution of Eq. �5�. The root with a
plus sign was discarded because it is related to positive pen-
dular rotations. We name the above-defined curve a synchro-
nization line because initial conditions on it develop neither
normal nor reverse rotation, for the angular frequency of �
coincides with � and, therefore, the time evolution of � av-
erages to a constant value.

At this point we address the problem of static initial con-
ditions. This is the most interesting situation, since it is ex-
pected that high enough clockwise initial velocities �̇0 trivi-
ally lead to reverse rotations. We note, however, that ẋ, ẏ,
and �̇ never vanish simultaneously, and, thus, the kinetic
energy of the disk K=mẋ2 /2+mẏ2 /2+ Ic.m.�̇

2 /2=md2�2 /2
+ �IP� /2+mdl�−E /���̇− IP�̇2 /2+ IP�̇3 /2�, is nonzero for
all times. It is clear that the force Fc alone is not compatible
with static initial conditions. In order to encompass these
conditions, we assume that an impulsive force acts on the
disk, taking it from rest to motion in a time scale much
shorter than any other in the problem, e.g., 2	 /�. This is a
realistic assumption when we have a table top engine driving
a light body. More explicitly, we suppose that the force can
be split into two parts,

F = 
F0 for t � �0−,0+� ,

Fc for t 
 0+,
� �7�

where F0 denotes the impulsive force that acts during an
arbitrarily small time interval centered at t=0. In the limiting
case we have a � function, which we initially write in generic
form as F0=��t��x̂+�ŷ�, where  and � have dimension of
momentum. These constants are to be determined by the mo-
tion we know the force F0 causes to the disk. More specifi-
cally, we know that, immediately after its application, to fit
the Fc prescription, the point P must acquire a velocity

vP�0+� = �dŷ . �8�

The equations of motion in the infinitesimal interval �0−,0+�
are mẍ=��t�, mÿ=���t�, and l cos � ���t�− l sin � ��t�
= Ic.m.�̈. Integrating, one obtains the velocities soon after the
application of F0

ẋ�0+� =


m
, ẏ�0+� =

�

m
, �̇�0+� =

l

Ic.m.
�� cos �0 −  sin �0� ,

�9�

where, here, the static initial conditions were employed:
ẋ�0−�=0, ẏ�0−�=0, and �̇�0−�=0. We also used ��0−�
=��0+�=�0 �since the impulsive force causes no discontinu-
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ity in coordinates�. The velocity of P at any time is given by

vP= ṙ+ l̇= �ẋ− l�̇ sin ��x̂+ �ẏ+ l�̇ cos ��ŷ. Therefore, the ini-
tial velocity as a function of  and � is

vP�0+� = � 

m
−

l2

Ic.m.
sin �0�� cos �0 −  sin �0�	x̂

+ � �

m
+

l2

Ic.m.
cos �0�� cos �0 −  sin �0�	ŷ .

By applying the consistency condition �8� we obtain a pair of
equations, involving  and �, whose solution is

 =
�dm2l2

IP
sin �0 cos �0, � = md��1 −

ml2

IP
cos2�0	 .

We then found the impulsive force that is consistent with the
subsequent evolution of the system. Substituting the above
results in the last equation in �9�, we obtain a quite simple
relation between the initial angle �0 and the initial velocity
�̇0 �where we suppress the argument 0+�. Given the initial
angle of the static disk, the angular velocity it acquires im-
mediately after the driving apparatus is turned on is

�̇0 =
mdl�

IP
cos �0. �10�

Only pairs ��0 , �̇0� related through this expression are valid
initial conditions. We are now in position to show the rel-
evant regions and curves in the space of initial conditions. In
Fig. 2�a� we show the normal �blank� and reverse �dotted�
regions in the space ��0 , �̇0�, separated by the synchroniza-
tion line �gray curve�. The black line represents the possible
initial conditions as given by �10�. We used the following
parameters: �=6 rad /s ���1 Hz�, m=100 g, R=10 cm,
l=7 cm, and d=10 cm. For these values, the constant of the

motion that satisfies Eq. �5� is Ẽ0.0543 J. We see that, for
these parameters, no reverse rotations can occur �the black
curve does not reach the dotted region�. In contrast, if we set

d=40 cm, keeping the other parameters �leading to Ẽ
0.2017 J�, we obtain the result displayed in Fig. 2�b�,
where it is clear �the gray and black curves cross each other�
that reverse rotations take place for an interval of initial
angles centered at �0=	. The three initial conditions marked
with a square, a circle, and a triangle represent the possible
regimes normal rotation, synchronization, and reverse rota-
tion. The time evolution of � for these three conditions is
shown in Fig. 3. The corresponding initial angles in radians
are �02.20 �black�, �02.44 �gray�, and �02.68 �light
gray�. Notice that in the black curve, e.g., we have normal
and reverse instantaneous motions depending on the instant
at which we record the velocity �̇. The results presented in
Fig. 2 refer to the global behavior of �.

It is possible to establish in a more precise way which
initial configurations lead to reverse rotations. First we note
that the range of initial angles that lead to reverse behavior is
bounded by the intersections of the synchronization line �6�
and the initial condition curve �10�. These boundary angles
are given by

cos2 �0
�b� =

IP
2

�mdl��2�2Ẽ
IP

−
2mdl�2

IP
− �2	 . �11�

Since 0�cos2�0
�b��1, in order to get reverse rotations we

must have

2mdl + IP �
2Ẽ
�2 �

1

IP
�IP + mdl�2, �12�

where we have a condition imposed on Ẽ= Ẽ�m ,d , l , IP ,��.
Let us analyze the limiting cases 2Ẽ /�2=2mdl+ IP and

2Ẽ /�2= �1 / IP��IP+mdl�2. Substituting these expressions in
the transcendental equation �5�, we obtain relations invol-
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FIG. 2. �Color online� Dotted regions represent initial conditions
leading to reverse rotations. We set d=10 cm in �a� and d=40 cm in
�b�. The gray and black lines are the synchronization and initial
condition curves, respectively. In �a� no reverse rotations can de-
velop since the two lines do not cross. In �b� reverse behavior is
possible for an interval centered at �0=	.
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FIG. 3. Evolution of the initial conditions indicated in Fig. 2�b�:
square �black�, circle �gray�, and triangle �light gray�.

REVERSE ROTATIONS IN THE CIRCULARLY DRIVEN … PHYSICAL REVIEW E 78, 055601�R� �2008�

RAPID COMMUNICATIONS

055601-3



ving a single parameter, K��2� / ��+1��= �	 /2���+1 and
K�2�2� / ��+2��= �	 /4���+2�, respectively, with �
=2mdl / IP. The first equation has only the solution �=0,
which is physically trivial, implying that the left-hand side of
the inequality �12� is always satisfied. The second equation,
besides �=0, presents the solution �̃2.523. Thus initial
configurations obeying 2mdl / IP= �̃ separate regions where
reverse rotation is possible from regions where only normal
rotations can occur. This condition involves only the relative
scales D=d /R� �0,�� and L= l /R� �0,1� and, in the case of
a disk, reads

D = 0.631L−1 + 1.261L . �13�

The above result is universal, in the sense that it is valid for
any m and �, and is independent of the absolute scales R, l,
and d. As indicated in Fig. 4, initial geometrical configura-
tions located below the curve �13� always lead to normal
behavior, while configurations above it may enable reverse
rotations, depending on the initial angle �0 �the precise val-
ues of �0 are given by Eq. �11��. We also note that there is a
value of d below which no reverse rotation occur. It is given
by Dmin= �̃ /�2, that is, dmin=1.784R. For L
0.5, variations
in this parameter produce virtually no change in D, which
becomes the only relevant parameter to define the possible
regimes of the system �see the “plateau” in Fig. 4�.

We stress that the obtained results are very general since
we used the particular form of IP only to obtain Eq. �13�. For

an arbitrary RB we have IP=ml2+�mR2, where � is a num-
ber and R is a characteristic scale. For the disk we have �
=1 /2 and R=R, while for a rectangular plate of sides a and
b we have �=1 /12 and R=�a2+b2. The general form of Eq.
�13� is

D =
�̃

2
��L−1 + L� , �14�

with D=d /R and L= l /R, for R�0. We note that in the
“degenerate” case of a point mass connected by a massless
rod to the pivotal point, obtained from the disk by taking R
=0, we get �=2d / l and the reverse condition becomes a
one-parameter relation d / l
1.261.

We investigated reverse rotations in the circularly driven
motion of a RB whose intrinsic angular degree of freedom
was shown to evolve according to a combination of pendular
and uniform motions. This enabled the complete determina-
tion of the initial configurations that lead to reverse behavior
�Eq. �12��. In addition, a scale-free, purely geometrical rela-
tion defining the regions where reverse rotation is possible
was obtained �Eq. �14��. The effects of friction, assumed to
be negligible in this work, may play an interesting role. The
friction generated in the small contact area connecting the
thin rod and the RB gives an extra torque �but no net force�.
This may be the only friction in the problem if we assume
that the RB is kept in the horizontal position solely by the
rod. It may also be of interest to consider the system im-
mersed in a viscous fluid. This would make our apparatus
very similar to a bioreactor for tissue growth �8�. It seems
that the influence of the regime of intrinsic rotation of the
tissue construct �our disk� is yet to be analyzed. These pend-
ing issues are presently under investigation.
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FIG. 4. Configurations located above the curve may develop
reverse rotations. Below the curve only normal rotation is possible.
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